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We show that one or more special transformations of the general equation of heat con- 
duction (diffusion) enable us to use the latter to solve a whole series of problems of the 

type indicated in the title. In particular, we solve the problem where the temperature 

(concentration) field is produced by a uniform or uniformly varying motion of a plane at 
which the temperature (concentration) is given as a function of time, as well as analog- 

ous problems for axially semi-infinite prismatic or cylindrical rods, etc., obtaining rela- 

tively simple linear integral equations for solving the problems in some of the more 
general cases. 

In p] we determined the temperature field ahead of the front of a heat source moving 

in an unbounded isotropic medium under the assumption that the heat source temperature 
is either constant or a given function of time (the one-dimensional problem). 

The method used in p] was based on consideration of the process in a coordinate sys- 

tem moving together with the heat source. This enabled us to obrain the solution of the 
problem directly in quadratures in the case of uniform motion of the front and to reduce 
the matter in the case of nonuniform motion to the solution of a certain integral equation 

which yields the required temperature field even when the coordinate of the front in- 
creases in proportion to the square root of the time. 

We shall show that if, in addition to introducing the above coordinate system, we sub- 

ject the heat condition equation in this system to a certain special transformation, then 
the latter assumes a form which enables us to solve the indicated problem in terms of 

known functions not only in the above cases, but also when the front accelerates or dece- 

lerates uniformly and when not only the initial state of the system and distribution of 

the specified heat sources within it, but also the time dependence of the temperature of 
the front can be specified in arbitrary fashion. The resulting exact solution can there- 
fore be used for approximate investigation of the general problem in the case where the 

front moves according to a more complex law but admits of sufficiently accurate step- 
by-step approximation by a uniformly varying motion. The same purpose is served by 

the other exact solution which we obtain in the present paper, name1 the solution for 
the case where the front x = 5 moves according to the law E = j! A + Bt + Ct2. 
where A, B and C are arbitrary constants. At the same time, me new form of the basic 

equation of the problem enables us to reduce solution of the latter in the general case 
to certain nonconventional integral equations which in some cases provide a more effec- 
tive and convenient pathway to the solution. We also note that considerations similar 
to those of @, 31 and our own method combined with the results obtained in these studies 
make it possible to solve many two- and three-dimensional problems of the theory of 
heat conduction and diffusion with moving boundaries. This includes the problem of a 
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semi-inffnite prismatic rod whose end x = I?(t) moves uniformly, with a uniformly 
varying velocity, or according to the law B(t) = (A + Bt + Ctz)‘l~, and whose side 
faces move along the coordinate axes according to the laws R, (t) = (&fit2 -i-Nit + 

+ Pt)“*, where i is the index of the corresponding axis and M,, N,, Pt .are arbitrary 
constants which depend on the index i. 

The same procedure can be used to solve the corresponding problems for a semi-infl- 
nite cylinder whose side-surface radius varies according to the law R(t)=(Mtz+ K:‘t f 

+ P)“% and whose endface either accelerates or decelerates uniformly, as well as 

various other problems, some of whi&h are m&Moned in Sects. 4 and 5 of the present 

paper. 

1. Let us consider the above problem, which reduces ln the one-dimensional case to 
solution of the equation au 

a - =-$ + f (x1 Q, azs a = const (1.1) 

for a semi-infinite domain 5 > R(t), where R(t) is some function of time, and where 
we know the initial state 

U I+-, =P(Z) for ?> R(O), u Ix=R(f)= q(t) 
at the moving boundary. 

Here f(s, t) is a given function of its arguments. 

In addition, the required solution must usually satisfy the requirement of boundedness 
or vanishing at inflnlty;at the very least the character of its growth at infinity must be 

indicated. 

Without limiting generality we can clearly assume that R(0) = 0 and a ~1. This 
we shall do below. We can also set F(z) e 0. In fact, let us suppose that this is not the 
case in the initial problem for u . Then. subtracting. for example, the function ( l ) 

(i 4 
1 O” 

111 (x9 1) = 2 vJr7 s F (4 exp 
-@ --zp da 

4at 
0 

satisfying the equations i3Ul au, 
a-=-, ullt=,,= F(z) (z>O) a29 ,at (1.3) 

from II, we find that the difference function U = u - u, satisfies the same Eq. (1.1) 

as u , but under the initial condition U 1 L4 = 0. The condition for z = R (t) for this 

function is of the form 

u IxxR(f) = (u - u,)Ix=R(f) = q(t) - ul[R(& tl = q(t) (1.4) 

i.e. since u1 [R(t), C] is a known function of t, it follows that tile known function9 (t) 
in the condition at the moving boundary must be replaced by another (also known) func- 

tion ‘p (t) . This enables us, without limiting the generality of our solution. to set -_. 
F(z) s 0, assuming, if need be, that u is the same as the function U. 

Now,settingg=s- R(t), i, e. introducing a coordinate system which moves 
together with the bounda 

% 
we obtain the following equation for u : 

o$+R’& = f (E + R, t) s f*, R’ = ‘$ (1.5) 

l ) We can also take a more general solution of Eq. (1.3) as our ul, namely 

1 w 

ua= 2vnot & c @ (3) exP -(a --2)’ & 
4at 

where @ (a) coincides with F (a) for a > 0, but can be chosen arbitrarily for a < 0. 
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Here the derivative with respect to t must be taken for a constant &, and the condi- 
tion at the left-hand boundary is u 1~~ = cp (t). 

In the case of uniform motion of the boundary we have R’ =I con&; Eq. (1.5) is 

solvable diructly in this case (see n]). 

In the general case of an arbitrary R(t) we replace the u ln (1.5) by the new function 
v by way of the relation U = qv, q = exp [ - l/s (R’t + l/s [ R”ddt) I W) 

Equation (1.5) and the correspondmg boundary condition for & = 0 and the initial 
condition become aa 

a+~&-++, fl’+ (1.7) 

V 
I 

u 

EC0 =Q :=I) I 
= cp(t)exp[tjR’adt], vIIEo = 0 W3) 

The condition for v as E --c= follows from the corresponding equation for U. 

Equation (1.7) implies, first, that in the case of uniform motion of the boundary 

( R” = 0 ) the solution of the problem with a moving boundary reduces simply to the 

solution of the analogous problem with a fixed boundary. But Eq. (1.7) also implies 

that the homogeneous equation with results from (1.7) for f’ = 0 is amenable to sepa- 
ration of variables even in the case R” = con& + 0, i e. in the case of uniformly 
varyfng motion. This makes it possible to solve the general problem formulated by Eqs. 
(1.7), (I. 8) in familiar functions which have already been investigated in detail (as we 

shall presently show). 

2. Let R - 1/Z at2 + pt, where a # 0 and fi are constants. Then R” = a and 

Eq. (1.7) becomes 

Here, by (1.6). 
F-F- 2 

L&-& =; 

q = exp 
II 

_ (at -I2 8) 5 _ asts + 3iy + 3P’t 1 
In this case (1.8) yields 

n lb0 = cp (4 exp lVla (aats + 34ta + 3P9t)l, v ItEo = 0 (E > 0) 
The homogeneous equation which follows from (2.1) for f* = 0, i.e. 

has solutions of the form w = e’lxaAt p(E), 5 = con&, where 

d2l.L / dE2 + ‘lza (E - VP = 0 

(24 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

This equation is integrable in Bessel functions of order ‘/. . Let US consider the cases 

a > 0 and a < 0 beginning with the latter. Setting u = - y, y > 0, and 

tl = (‘lsr)“~ (E - A) (2.6) 

where the value E = 00 corresponds to q = oo , we can rewrite Eq. (2.5) as 

d2p I d$ - qp = 0 (2.7) 
The independent particular solutions.of Eq. (2.7) are the functions 

ILI (rl) = v&/i (‘/stl”), ~a (rl) = v/tl Kl7, (Ystl’h) (2.8) 
i.e. the modified Bessel functions of order l/o of the indicated argument multlplled by 

Pi-. We note that despite the ostensible presence of the square root of q in these 
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formulas, the function’s Pr(tl) and p&l) in fact constitute entire functions of q. This is 
evident from the fact that they are linear combinations of the two other independent 

particular solutions of Eq. (2.7). namely 

PsPl)=‘1+~4+---L+ . . . . 3.4Y6.7 r,(tl)*=l+&+~+... (2.9) 2.3.5.6 
which is readily verifiable by substituting them into (2.7). 

The eigenfunctions of the problem under consideration are the solutions (e. g. see [4]. 
Sects. 15 and ‘21 or [5]) of Eq. (2.5) which vanish for f = 0 and E = 00. The latter 

condition is satisfied by the function ps($, which is given by 

P(E) = )/E-W,I’/,)~(~- X)‘Y (2.10) 

to within a constant factor with no special significance. 
Let us make use of the familiar formula 

W)=& [l-,(z) - IV(Z)1 (2.11) 

Setting v = ‘Is in this equation, we readiiy obtain (see monograph [S], Sect. 4.12 
for details) the following expression for the function p(E) for E < ‘5 in terms of functions 
of a real argument : 

The condition p(O) = 0 gives us the equation 

J,,, [s/s v%k,,“,‘ll] + J-c, [l/s )/%Wsl = 0 (2.13) 

for finding the eigenvalues 5,. There are detailed tables (e. g. see [7]. p. 103)) of the 
roots of the equation J&) + J-v, (4 = 0 (2.14) 

There are also tables of functions which differ from (2.10) and (‘L. 12) by a numerical 

factor only (they are Airy functions ; see [8] for information concerning suitable tables) ; 
hence, denoting the roots of Eq. (2.14) by z,,we obtain 

%I = WTI’/?Y~9 rr= 1,2,3,...,00 (2.15) 

Substituting these values into (2.10) and (2.12). we obtain the eigenfunctions p,(E) 
of the corresponding boundary value problem for Eq. (2.5) which we can now rewrite as 

dzp, / dP - l/, v(g - I&,, = 0 (n = i, 2,3,...) (2.16) 

The functions p,(E) f orm a complete system orthogonal in the interval (0, m). In 
order to make it normalized as well, we need merely recall the formula 

(2.17) 

and the fact that the derivative occurring in this expression is given by 

+n I d& Lo = - ti/‘/lr 1, [J-s/, (G,) - Jv, (dl 
Hence, the normalized eigenfunctions are of the_folm_ 

%(E) = - 
P* cu 

& IJ_.,, (“J - JS,, WI 
(n>i) (2.18) 

and the corresponding expansion of some function w(E) in a series in the functions (P,,(E) 
(see [S] for a discussion of the expansibility conditions) is 
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(2.~9) 
-1 0 

Let us use the above results to solve the problem formulated at the beginning of the 
present section. Denoting the functions occurring in the right sides of Eqs. (2.1) and 

(2.3) by P(& t) and r(r) . respectively, for brevity, we obtain 

PV --+b-+=p(&t), w 0 lea3 = r (q (2.20) 

Multiplying the first equation of (2.20) by $,(E)ai and integrating from 0 to co, ._ 
we obtain o3 

s %I Pn (t) 
0 

(2.21) 

to 

vn .= 0, (t) = s 4wca Pn = Pn tt) = 3 PW% (2.22) 
0 0 

Integrating the first term on the left side and (2.21) twice by parts, and then recalling 

the first equation of (2. JO) and the condition g,(O) I qp,( co) = 0, as well as the 

fact that qn satisfies the equation 

$73” - (‘/*FE A An) $n = 0 
we arrive at the relation 

dv,/dt + &A = %,’ (0) r (t) - P,, (t) (n > 1) (2.23) 

Integrating this equation (whose right side is known), we find under the initial condi- 
tion’ unlfpo = 0 which follows from (1.22) where ut_o = 0 that 

t 

v*(t)== 1 ‘A e w-r) [q,,'(O) r (T) - P,,(T)] ds 
0 

(2-W 
The formula Q) 

V = v (Ea t, = 2 un tt) $n (6) (2.25) . I 

n-1 

now gives us the solution of our problem. 
We have considered in detail the case a ( 0 corresponding to a point spectrum. BI 

the case a > 0 when the spectrum becomes discontinuous will not be considered here 
(we refer the reader to the aforementioned monograph [S]. Sect. 4.13). 

8. Let us note some cases of solvability in known functions of one-, two-, and three- 

dimensional problems of heat conduction theory and similar problems in the case of 
moving boundaries. 

Let us suppose that we are required to solve the problem formulated by the equation 

(3.1) 
for a domain z > R,(t), unbounded in the direction of the positive s-axis whose cross 
section does not depend on x but can vary with time, and which we agree to call a “rod” 
although it may, in fact, be a plate. The boundary conditions for u can be assumed given 

for x = R,(t) and for x = 00, as well as at the side surface of the rod ; the initial 
value t+=~ can be set equal to zero, which does not limit the generality of the solution 
(by virtue of what was said in Sect. 1). We shall set f E 0, which also does not limit 
the generality of the solution, since, if the eigenfunctions of the homogeneous problem 
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are known, then these functions can be used to expand the solution of the nonhomogene- 

ous problem. 
Applying the transformation described in Sect. 1 to (3.1). i. e. 

E = 2 - 4 U), u = QlU, q1 = exp -S 
[ ( 

~,‘g + -!J- 1 R~~w)] (3.2) 

we obtain 

(3.3) 

Let RI =-_ ‘/a ai2f2 + pt. Equation (3.3) then becomes 

~+.$+~+++_o (3.4) 
Setting 

Q = P(WY, 2, t> (3.5) 
where p.(E) is one of the eigenf~ctions of the problem considered in Sect. ~2 which satis- 

fies Eq. (3.5) and where h is the corresponding eigenvalue ( * ), we find from (3,4) that 

a2W Pw ah l?W 
-&-i--+~+~W-~=o (3.6) 

If the cross section of the domain is a rectangle with any ratio of sides (e. g. a strip 
of constant width), a disk, a circular ring, a sector, etc., whose dimensions do not vary 

with time, then, since Eq. (3.6) is amenable to separation of variables in Cartesian and 

polar coordinate systems(the latter in the plane yz , of course), general equation (3.1) 
for a domain with a cross section of similar shape (with the left hand boundary moving 
at constant velocity or constant acceleration) is also solvable in known functions. 

In the case where the cross section varies with time we can obtain certain classes of 

problems solvable in known functions by combining a ~ansformation of the type (3.2) 
(not only for the z.-coordinate, but for other Cartesian coordinates as well) with the 

transformations described in r2, 31. Thus, replacing the y and .a in (3.6) by the indepen- 
dent variables vl and 5 and introducing the new function P by means of the relations 

q=& k-j!& &. =: R,(t) = ‘j/ Ait + 2&t + Ci (i = 2,3) (3.7) 

(Ai7 Bi7 ‘i are arbitrary constants) and 

p+ 
RzR2'qafRsRs'<2 

4 I 
(3.8) 

we obtain the following equation for P: 

1 SP 

-[-+ R2 w 

42cz4- w I12p] 4 isz [ ;;_ + -WA; h2 cap] + 

+ 
z&p_ $-__() (3.9) 

The variables in this equation become separable if we set 

p = @(sMrlYW (3.10) 

and impose the following conditions on the functions m(q) and a(c) : 

l ) For example, for a < 0 the function or (E) is one of the functions 1~l’,, (5) defined 

by formula (2.18) and h is the corresponding eigenvalue h,. 
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+ + [ A’Czb Bz2 qa + Va ] Cp = 0 (V.2 = con&) (3.11) 

3 + [ AsCs~Bsa ca+ V,JX = 0 (vg - const) (3.12) 

We then obtain the equation 
d0 ah vs -= -_ -- 
dt 2 ffaz 

8 (3.13) 

for e(t) . 
The foregoing implies that if the cross section of the domain is a rectangle whose 

sides perpendicular to the y - and z -axes move apart or move together with the according 

to laws of the form (3.7) with i = 2 and i = 3 , respectively, and if the boundary values 

of the relative coordinates tl and 5 do not depend on time, then we can expand the solu- 

tion of the problem in the corresponding eigenfirnctlons of Eqs. (3.11). (3.12) correspond- 

ing to these (constant 1) boundary values of rl and c (see 123 for more details). 

If Rs(t) = R,(t) (homogeneous expansion or compression), then Eq. (3.11) becomes 

simpler, i. e. 

This form of the equation enables us to separate variables not only in the Cartesian 

coordinates tl, 5, but also ln the corresponding polar coordinates. The problem then 

becomes solvable in known functions for disk, circular ring, and other cross sections. 
In all of these cases the solution can be obtained according to the procedure. described 

in detail in r2. 3]. 

4. We investigated the solution of boundary value problems for Eq. (3.1) in the case 
of a semi-infinite prismatic or cylindrical domain (in particular, for a half-space) under 
the assumption that the endface z = RI (t) moves according to law (3.2). and that the 

side faces move according to laws of the form (3.7). 
A similar technique can be used to investigate any other combination of motions of 

these types along the axes z’, y, z. For example, we can assume that the motion along 

the r-axis is described by the law 

z = R, (t) = v/A# + 2Blt + Cl (Al, Bl, Cl = co-t) (4.1) 

and the motion along the y- and z -axes by law (3.7). This brings us to a particular case 

of the analogous problem for a domain in the shape of a rectangular parallelepiped with 
an arbitrary rib ratio at the initial instant whose faces move according to laws (3.7) and 

(4.1). In this problem (the general method for its solution is described in p]) the length 
of the rib parallel to the z-axis must be set equal to infinity, which requires the intro- 
duction of eigenfunctions of an equation of the form 

dsu / dt2 $ (l. - ap)u = 0 (4.2) 
over a semi-infinite segment. 

Here a is a given constant and X an arbitrary parameter. Considering the one-dimen- 
sional problem under the assumption that nothing depends on y and I , we obtain the 

solution of the initial problem for Eq. (1.1) formulated in Sect. 2 in the case where the 
motion of the half-space boundary is described by law (4.1). 

In conclusion we note that introducing the new independent variables 
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E = z - Rl (f), ‘1 = y - R, (f), 5 = 2 - R, (1) 
into Eq.(3.1) and setting 

. 
R = lJ?l+ i,R, + bR*, p = i,E + i,q + 66 

(4.3) 

(4.4) 

ll = qv, q = exp[--l/t(Rp) + r/s(Rp) + l/t S R”drl 
R’2 = R’s1 + R2’2 + R ‘2 s (4.5) 

where l,, i,, i, are unit vectors along the coordinate axes, yields the generalization of 
Eq, (1.7) for the three-dimensional case, 

(4.6) 
-3 f (E + RI, rl+Rr. 5 + fW) 

4 

Considering a domain in the shape of a rectangular parallelepiped whose translational 

motion along the coordinate axes in space is described by formulas (4.3). so that the 

coordinates E, v, 6 of its faces retain time-independent constant values, and setting 

Ri(t) = '/lai 1' $ pit + yi (ai, fli, yi r const) (i c 1,2J) (4.7) 

we find that the variables in the homogeneous equation which follows from (4.6) for 

f = 0 become separable and again obtain equations of the form (2.5) for the eigenfunc- 

tions along each of the coordinates E, 9, 1;. These equations are valid in a finite or a 

semi-inffnite interval depending on whether the corresponding rib of the parallelepiped 
is finite or infinite. 

We have investigated problems whose solutions are expressible in terms of known func- 
tions, which is possible when the functions R, R{, etc. are of a specific form. If these 
functions in Eqs. (1.7) or (4.6) have a form different from (3.7) or (4.7). then we can 

use the procedure described in Sect. 3 of t2] to reduce solution of the corresponding 

boundary value problems to relatively simple integral equations for the function v. 
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Dual integral equations with kernels containing spherical Legendre functions are exam- 
ined. It is shown that these equations permit exact solution in quadratures. The proposed 

theory includes as a special case the theory of equations examined earlier which are con- 

nected with the Mehler-Fock rransform and which are encountered in various applica- 

tions, in particular in the solution of mixed boundary value problems in mathematical 
physics and in the theory of elasricity. 

1. Equations of the following form are called dual equations COMeCted with the inte- 
gral transform of Mehler-Fock: 

00 

s M (r) P_I,,+,~ (ch a) dr = I (a) (6 B a < 4 
0 

a3 

(1.1) 

here P, (2) is a spherical Legendre function with a complex index v = - ‘1s f f~, 

f(a) and g(a) are given functions, o&r) is the weight function (O(T) > 0, O(T) z T 
for 7 + m):-Equations of this type are encountered in many applications; in particular, 
they play an important role in the solution of some mixed boundary value problems. 

Generalizations of Eqs. (1.1) are also examined. The kernels of these equations contain 
assocfated spherical functions. 

At the present time a general theory of such equations does not exist, and a large part 
of results obtained in this area is related to equations of a special form which correspond 

to different selection of function o(r) (see [l-6]). Thus, the following equations were 
studied 03 

s 1M (z) P_l/e+i, (ch a) d% = f (a) (0 d = < a01 (1.2) 
0 


